Image Segmentation By Self Organizing Map With Mahalanobis Distance
نویسندگان
چکیده
Image segmentation is the classification of data sets into group of similar data points. This article proposed a method to determine the winner unit by self organizing mapping network. The distance between the input vector and the weight vector has been determined by mahalanobis distance and chooses the unit whose weight vector has the smallest mahalanobis distance from the input vector. The results included in this article show the validity of the proposed method. Keywords—Discriminant function, Image Segmentation, Mahalanobis distance, Self Organizing Map, Unsupervised Neural network.
منابع مشابه
A Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملColor Image Segmentation Using Local Histogram and Self-Organization of Kohonen Feature Map
Segmentation is an important step for image analysis, but a good segment algorithm which can handle color image with texture area and has less computation time is rare. W e propose to use the local window image histogram, which is easy to compute and could quickly collect the information of neighbors, together with the Se2f-Organization of Kohonen Feature Map ( SOFM ) neural network, which can ...
متن کاملComparison of Supervised Self-Organizing Maps Using Euclidian or Mahalanobis Distance in Classification Context
The supervised self-organizing map consists in associating output vectors to input vectors through a map, after self-organizing it on the basis of both input and desired output given altogether. This paper compares the use of Euclidian distance and Mahalanobis distance for this model. The distance comparison is made on a data classification application with either global approach or partitionin...
متن کاملکاهش رنگ تصاویر با شبکههای عصبی خودسامانده چندمرحلهای و ویژگیهای افزونه
Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...
متن کاملA Window-Based Self-Organizing Feature Map (SOFM) for Vector Filtering Segmentation of Color Medical Imagery
Color image processing systems are used for a variety of purposes including medical imaging. Basic image processing algorithms for enhancement, restoration, segmentation and classification are modified since color is represented as a vector instead of a scalar gray level variable. Color images are regarded as two-dimensional (2-D) vector fields defined on some color space (like for example the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013